
Week 8 - Monday

 What did we talk about last time?
 UDP: DNS

 Networked devices are configured to have either a static or
dynamic IP address
 Static IP addresses are set in a configuration file and rarely change
 Dynamic IP addresses are assigned when a device connects to a network

 Most of the devices you own have dynamic IP addresses
 Your laptop or phone is dynamically assigned an IP address by your router

when you connect, either on WiFi or Ethernet
 Even your router is dynamically assigned an IP address by your ISP

 Servers usually have static IP addresses so that DNS records don't
need constant updates

 But if you've just connected your device to the network, how
does it get its IP address?

 Dynamic Host Configuration Protocol (DHCP) is a protocol
for getting a dynamic IP address

 The socket programming we've been talking about requires
an IP address for a client
 That's where messages are sent back to

 So how do you receive a message if you don't have an IP
address…because you're trying to get an IP address?

 Broadcasting!

 Instead of sending a message point
to point, DHCP messages are
broadcast via UDP on port 67
 The destination is the special IP address

255.255.255.255 reserved for
broadcasting

 The source is the special IP address
0.0.0.0 indicating no valid IP

 A DHCP server receives messages
and responds with an IP address

 Other devices ignore the messages

 DHCP is more complex than HTTP or DNS since it's got multiple
steps
1. The new device broadcasts a DHCP discover message asking for an IP
2. The DHCP server broadcasts a DHCP offer message offering an IP
3. The new device broadcasts a DHCP request message asking to take the

IP it was offered
4. The DHCP server broadcasts a DHCP ACK message acknowledging that

the device has been assigned the address in question
 Like DNS, the device uses a random xid to keep different

requests straight
 When the device requests the IP it's been offered, it increments

the xid by 1

 The table shows an
example of the addresses
and messages broadcast
to request and assign an IP
address
 yiaddr is the new IP

address
 siaddr is the server IP

address
 The lease time is how long

the IP address is valid for, in
seconds: 86,400 = 24 hours

 When the lease expires,
the device can ask for the
IP again

Message type UDP addressing DHCP contents

DHCP discover
SRC: 0.0.0.0:68
DEST: 255.255.255.255:67

op: BOOTREQUEST
xid: 42
yiaddr: 0.0.0.0

DHCP offer
SRC: 192.168.1.1:67
DEST: 255.255.255.255:68

op: BOOTREPLY
xid: 42
yiaddr: 192.168.1.7
siaddr: 192.168.1.1
lease time: 86400

DHCP request
SRC: 0.0.0.0:68
DEST: 255.255.255.255:67

op: BOOTREQUEST
xid: 43
yiaddr: 192.168.1.7
siaddr: 192.168.1.1

DHCP ACK
SRC: 192.168.1.1:67
DEST: 255.255.255.255:68

op: BOOTREPLY
xid: 43
yiaddr: 192.168.1.7
siaddr: 192.168.1.1
lease time: 86400

 ARPANET was originally designed for
government and the military

 As more people worked on it (and
similar networks), they standardized
the protocols and gave access to
academics and businesses
 Many people were sending and receiving

e-mails as early as the 70s
 It was opened up to the public in the mid

90s
 Vint Cerf first coined the term "Internet"

Image from Business Insider

https://www.businessinsider.com/how-vint-cerf-is-trying-to-make-the-web-last-forever-2016-6

 As we have emphasized several times, one of the big differences
between single-machine IPC and networked IPC is reliability

 In single-machine IPC, processes could check the OS for error
codes if communication goes wrong

 Over a network, there's no OS
 We have no way of knowing why a message wasn't received

 Writing networked applications means making a choice:
 Rely on a lower layer to handle the problem (usually by automatically error

checking and re-sending packets)
 Take responsibility for errors at the application layer (by re-sending,

showing an error message, or allowing quality to degrade)

 To better understand the choices we have as developers,
we're going to look more deeply at the layers:
 Application
 Transport
 Internet
 Link
 Physical

 We have already given examples of client-server applications
 HTTP
 DNS

 Although some client-server interactions are much more
complicated, many of the same principles will apply

 Peer-to-peer applications (P2P) are the other major, application-
layer approach
 Every host is potentially a client and a server
 Communicating with peers is more complex because there isn't a single

server to keep track of
 In many situations, P2P applications can provide better

performance than client-server when the number of hosts is large

 P2P has a historic association with illegal file sharing, but P2P architectures are used for
many different kinds of applications

Application Service Description Examples

Content
Distribution

Scalable approaches to
sharing data across the

Internet

 File storage and sharing: Gnutella, BitTorrent,
InterPlanetary File System (IPFS)

 Content delivery networks (CDNs): Akamai, Limelight
 Streaming media: Spotify (originally), Sonos
 Software update distribution: Linux, World of Warcraft

Distributed
Computing

Delegating work for an
application across many

computers

 Privacy and censorship resistance: Tor, Freenet
 Cryptocurrency: Bitcoin
 Botnets and malware: Storm

Collaboration
Providing real-time

human communication
 Voice Over IP (VOIP): Skype (originally)
 Instant Messaging: Tox

Platforms Building applications Java: JXTA (obsolete)

 Normally, there's a single server for a webpage
 What if that webpage has content that millions of people

from all over the country want to view?
 The load on the server will be huge
 Getting the webpage will be slow, or the server could crash

 Content delivery networks (CDNs) provide caches of
webpages

 People trying to view a webpage will be redirected to a
physically close mirror

 Big companies like Google, Amazon, and Netflix have
their own CDN services

 Less well-known companies like Akamai provide CDN
services to others

Image from Wikipedia

https://en.wikipedia.org/wiki/Content_delivery_network

 P2P hosts are fundamentally
connected by the Internet

 However, they view their
connections inside the P2P
network as an overlay
network, connections to other
P2P hosts

 Thus, socket connections are
made to P2P neighbors who
forward messages on to other
neighbors

Router

Router

Router

Router

Router

A

B

C D

E F

G

Router

Dashed lines show the overlay network

 For A to send a message to B, it
has to send it to C, which sends
it to E which sends it to B
 Even though A and B are on the

same network!
 While this arrangement seems

inefficient, it can be used in
applications like Tor, where the
goal is to hide the true
addresses of the hosts

Router

Router

Router

Router

Router

A

B

C D

E F

G

Router

Dashed lines show the overlay network

 Design decision: Should a P2P network be structured or
unstructured?

 Early P2P networks were often unstructured
 This approach made sense for illegal file sharing
 Unstructured networks have a lot of churn, hosts arriving and leaving

frequently
 Many P2P networks are now structured with a logical framework
 Maybe the overlay network arranges nodes in a circle, with each node

knowing about the node before it and after it
 A CDN might have an organization based on physical proximity

 Design decision: How are objects like files identified in the
network?

 Unstructured networks often use query flooding
 Ask all your neighbors if they have a file
 If they don't have it, they'll ask their neighbors, and so on

 Structured networks have more options
 Indexing objects based on location
 Local indexes only know about neighbors
 Depending on the structure, algorithms can be used to search the network
 Centralized indexes are simple but put strain on a central server
 Other approaches distribute the index across several servers

 The transport layer provides a logical structure for end-to-end
communication between two different (networked) processes

 Although there are other protocols for the transport layer, the
most common ones are flavors of UDP and TCP

 As we have pointed out in the past:
 TCP provides reliable transport that tries to fix failures
 UDP is faster but unreliable

 The User Datagram Protocol (UDP) provides a bare-bones
approach to sending messages

 Information included in a UDP segment is:
 Source port
 Destination port
 Length of the segment
 Checksum
 Payload (actual data)

 Each header field is 16 bits, making a header of 8 bytes for each
UDP segment in addition to the data

 UDP uses a checksum to make sure that the segment isn't
corrupted during transmission

 It is possible (but unlikely) that a message with some bits flipped
will have the same checksum as the original

 Pseudo-code:
 Add up all the 16-bit quantities in the message into a 32-bit sum
 While adding, if the most significant bit of the sum is 1, change the sum to

be the sum of its lower and upper halves
 If there was an odd number of bytes, add the last byte padded with zeroes
 After the sum is made, add the lower and upper halves of it to get a 16-bit

value
 Return the bitwise negation of the result

 The following code computes the checksum for data
 Note that a 16-bit pointer is given to the data, dealing with two bytes at a time
 Even so, the length is the number of bytes (8-bit quantities)

uint16_t cksum (uint16_t *bytes, size_t length)
{
uint32_t sum = 0;
for (size_t i = 0; i < length / 2; i++) // Loop through each chunk of 16 bits

{
sum += bytes[i];
if (sum & 0x80000000) // If there's a leading 1, add the two halves

sum = (sum & 0xffff) + (sum >> 16);
}

if (length % 2 == 1) // For an odd number of bytes, pad the last with zeroes
sum += ((uint8_t *)bytes)[length - 1];

// Combine the two halves and flip the bits
sum = (uint16_t) sum + (uint16_t) (sum >> 16);
return ~sum;

}

 The following are UDP segments for a DNS request and response

Header

1388
0035
0025
f693

source port = 5000 (0x1388)
destination port = 53 (0x0035)
length = 37 (0x0025)
checksum

Payload
1234 0100 0001 0000 0000 0000
0765 7861 6d70 6d64 0363 6f6d
0000 0100 01

DNS request for example.com

Header

0035
1388
0035
af04

source port = 53 (0x0035)
destination port = 5000 (0x1388)
length = 53 (0x0035)
checksum

Payload

1234 8180 0001 0001 0000 0000
0765 7861 6d70 6d64 0363 6f6d
0000 0100 01c0 0c00 0100 0100
00e9 4900 045d b8d8 22

DNS response for example.com

 Once the UDP segment arrives, the receiver can compute a
checksum for the segment to see if it matches the one
provided

 UDP itself doesn't do anything with this checksum value, but
the applications built on UDP can decide to request the data
again or ignore the bad data

 This lack of reliability seems like a problem, but it can be
useful for streaming movies or audio

 It's also useful for DNS and DHCP, which are not usually visible
to the user

 Finish TCP
 Network security

 Work on Project 2
 Due Friday by midnight!

 Read section 5.4

	COMP 3400
	Last time
	Questions?
	Project 2
	Broadcasting
	Static and dynamic IP addresses
	DHCP
	Broadcasting
	DHCP steps
	DHCP example
	Internet
	Internet
	Reliability
	A deeper dive into the layers
	Application Layer
	Peer-to-peer applications
	P2P examples
	Content delivery networks
	Overlay networks
	Overlay networks
	Characteristics of P2P networks
	More characteristics of P2P networks
	Transport Layer
	Transport layer
	UDP
	Checksum
	Actual code for checksum
	Example UDP segments
	Unreliability
	Upcoming
	Next time…
	Reminders

